Take your FREE HSW Course here - AIA approved!

This is your go-to source for free AIA-approved continuing education for architects. Plus, almost all our courses are delivered in streaming HD video. Registration is fast and easy, just click on Login/Register above. Then, you can enroll in any of our courses found in any of our programs with a single click. Our courses meet or exceed NCARB's high standards for state board license renewal. AIA member? Your credit will be reported to AIA for you.

Improve Occupant Wellness and Productivity with Solar Shading Fabrics

Solar shading devices, while available in numerous weaves, textures, and colors, go beyond contributing to the aesthetics of a space. Specified correctly, solar shading devices can maximize daylighting benefits and contribute to occupant well-being, productivity, and engagement, while mitigating the detrimental effects of UV rays and glare.

Learning Objective 1:
Students will understand the benefits daylighting, including the psychological and physiological well-being of occupants, as well as its drawbacks, such as glare and solar heat gain

Learning Objective 2:
Students will become familiar with the types of solar shading fabrics available for use in commercial settings and their components, including operating systems, weave, color, and openness factor, and the ways in which these contribute to the control of daylighting.

Learning Objective 3:
Students will explore the benefits of solar shading devices that extend beyond light management, such as sound mitigation, sustainability, and antimicrobial properties.

Learning Objective 4:
Students will determine how to select the right fabric for an application, taking into account aesthetics and room conditions

...Read More

How Wallcoverings with PVF Film Contribute  to Healthier and More Attractive Buildings

This course will cover the aesthetic, design, health, safety and welfare aspects of, and certifications achieved by wallcoverings laminated with DuPont™ Tedlar® polyvinyl fluoride film. Because Dupont™ is the only source for Tedlar® film there is no comparable competitive product in the market place. Therefore, we will be referring to the product from time to time by using its registered trademark brand name, Tedlar®.

HSW Justification:
Tedlar PVF film is applied to wallcovering to prevent off-gassing of building materials behind the wall. The film also is repeatedly and frequently cleanable without damage or deterioration. It does not support the growth o=f microorganisms, mold or mildew and is therefore excennent in restaurant and hospital settings. Additionally, the film is impossible to permanently stain. Stains wipe off with ease. Learning objectives cite additional HSW benefits.

Learning Objective 1:
The architect will recognize the aesthetic and design advantages of using PVF film on wallcoverings and architectural surfaces.

Learning Objective 2:
The architect will understand the health and safety advantages of using PVF film wallcoverings in occupied spaces.

Learning Objective 3:
The architect will be able to identify appropriate interior and exterior applications for wallcoverings protected by PVF film.

Learning Objective 4:
And, the architect will understand the ratings and certifications achieved by Tedlar® laminated wallcoverings.

Because Dupont™ is the only source for Tedlar® film there is no comparable competitive product in the market place. Therefore, we will be referring to the product from time to time by using its registered trademark brand name, Tedlar®.

Owing to the unique nature of this product, an architectural specification describing the PVF film known as Tedlar®. You will need to download this document to begin the course. At least one of the concluding quiz questions is based on this supplemental material.

...Read More

Create Intelligent Buildings with Networked Lighting to Improve Tenant Overall Well-Being

This session will present how IoT lighting can be a fundamental platform for smart environments.  Well planned building integration allows a flexible, scalable lighting system to collect the data that ultimately brings more value to the building owner.

At the end of this course, participants will learn:

  1. Define IDA, light pollution, and related terms
  2. Identify the impacts of light pollution
  3. Demonstrate the difference between IDA and non-IDA lighting
  4. Assess the process of establishing IDA certification
...Read More

Design Building Envelopes That Support Healthy, Efficient Buildings

The building envelope separates the conditioned interior space from the environmental elements of the great outdoors, and this course explores a few solutions to equip the building envelope to defend the interior from nature's onslaughts, manage moisture, improve thermal performance, and admit daylight without glare.

HSW Justification:
Improper use of vapor barriers is one of the leading causes of moisture-related issues in buildings today. Those moisture related issues can include the growth of mold and mildew, which compromises the quality of the indoor environment and can even cause structural damage. Designing a proper air barrier system is crucial to moisture protection and protecting the thermal performance of the original design. This article provides best practices for designing an air barrier system that will function properly. We also discuss some solutions that can improve the functionality of the building envelope’s thermal performance. The course explores a translucent and an opaque solution that improve the thermal performance of the envelope, while offering additional benefits. Translucent wall panels allow diffuse, glare-free daylight into an interior, without compromising thermal efficiency at the opening and precast structural panels offer code-exceeding thermal performance and structural load-bearing capabilities.

Learning Objective 1:
Students will be able to explain why controlling air leakage in the building envelope is crucial to safeguarding the quality of the interior environment and protecting the energy efficiency of the building.

Learning Objective 2:
Students will learn to apply best practices to design an air barrier system that will effectively manage moisture intrusion and avoid moisture-related issues in the building envelope.

Learning Objective 3:
Students will be able to describe how translucent daylight panels allow daylight into the interior, mitigate glare and provide better thermal performance than many other glazing solutions.

Learning Objective 4:
Students will learn to use structural precast concrete panels to reduce the amount of perimeter steel needed on a project, while achieving and exceeding code-compliant thermal performance.

...Read More

WELL Building Standard | Version 2

The WELL Light concept promotes exposure to light and aims to create lighting environments that are optimal for visual, mental and biological health. This session explores the elements that make up the WELL Lighting concept and provides insights and recommendations for designing to these standards.

...Read More

Leveraging Advances in Parametric Design & Digital Fabrication in Architecture

This course will explore the cutting-edge union of design and technology by delving into parametric design and its symbiosis with digital fabrication, and how the vision is best achieved via vertically-integrated, technology-forward product manufacturers. We will also discuss strategies for effective collaboration with these manufacturers throughout the architectural design process.

Learning Objective 1:
Students will learn about the use of parametric design in architecture, including its definition, history and current state.

Learning Objective 2:
Students will learn about the marriage between parametric design and digital fabrication.

Learning Objective 3:
Students will understand why vertical integration is an important operating model for product manufacturers looking to leverage parametric design.

Learning Objective 4:
Students will understand how to partner with vertical manufacturers throughout the architectural design process and learn the advantages of this digital collaborative approach.

...Read More

Bird Friendly Glass Solution

Architecture tells us a great deal about society. In fact, glass and glazing are used to blur the lines between inside and out, helping elevate performance and the experiences of people. Yet while humans can use environmental cues to identify glass as a barrier, there is growing realization that birds cannot. The solution is bird-friendly glass that delivers on performance, energy efficiency and the needs of people. This course from Guardian Glass is intended to provide the basis for a better understanding of how to recognize issues affecting the bird population while learning about best practices and design fundamentals for smarter, safer buildings.

...Read More

Designing Beautiful High-Performance Building Envelopes

The building envelope has a lot of different jobs to do—from insulating the building so that it can be efficiently heated and cooled to providing air and water barriers that keep harmful moisture at bay, as well as providing the aesthetic face of the project. High performance building envelopes do all of those things extremely well. This article explores some of the latest high-performance solutions that can be used to create those high-performance envelopes.

HSW Justification:
A high-performance building envelope is necessary to create a building that is efficient and healthy. This article takes a look at how different components in the building envelope perform—giving architects the information they need to choose high-performance components that will produce a high-performing envelope.

Learning Objective 1:
Compare different types of continuous insulation in terms of the thermal performance they offer and the way they behave when exposed to water and fire.

Learning Objective 2:
Describe how insulated metal panels (IMPs) can be used on the envelope to improve building performance, create efficient and healthy interiors, and enhance design flexibility.

Learning Objective 3:
Explain how PET bottles can be upcycled into insulation creating a new product that contains recycled material and improves thermal performance of the building envelope.

Learning Objective 4:
Describe the ways that architectural metal wall systems enable architects to push the creative boundaries of their designs.

...Read More

Pushing the Boundaries of Form and Function

As architects and clients alike demand the creation of what’s next, design teams rely on new product systems and solutions to help them push the boundaries of form and function. This article profiles a few solutions that enable architects to create distinct building envelopes that don’t sacrifice on the efficient performance or sustainable design considerations that also occupy prominent spots on almost every client’s wish list.

HSW Justification:
This article explores solutions that enable architects to deliver a desired aesthetic that also performs efficiently and offers sustainable design benefits. For example, thermal barriers in the aluminum framing that hold the glazing in place allows architects to complete historic renovation projects that exceed thermal performance targets, without compromising the integrity of the historical aesthetic. Composite metal panel systems that support very unique applications and creative demands from design teams can also offer top-tier performance in terms of fire-, water-, and impact-resistance. Extruded aluminum trim beautifully meshes different types of exterior cladding, while helping the envelope to better manage moisture.

Learning Objective 1:
Explain how incorporating thermal barriers into the aluminum framing in the fenestration of the Crosstown Concourse helped the project become the world’s largest LEED Platinum historic rehabilitation project, while maintaining the integrity of its historic aesthetic.

Learning Objective 2:
Specify a composite metal panel system that offers the resistance to fire, water, and impact best-suited to the needs of a particular project.

Learning Objective 3:
List the aesthetic and sustainability-related benefits of specifying extruded aluminum trim on an exterior cladding.

Learning Objective 4:
Describe how the different finishes of precast concrete used in the façade of the Ale Asylum were reverse engineered to perfectly match the concept originally pitched and accepted by the city.

...Read More

Egress Marking and Illumination ISO-0501

This course is designed to introduce the architect to egress marking systems that are used for ordinary way finding and building evacuation in emergency situations. These signage systems are meant to be selected and installed according to specific standards established by building codes. Additionally, once installed, these systems must be tested to assure their efficacy in case of an emergency. How to select and specify the appropriate markers and the technological solutions available, as well as testing methods, will all be covered in this course.

HSW Justification:
Building exit markings are critical to the health, safety, and welfare of building occupants during emergency situations.

Learning Objective 1:
When this course is complete the student will will understand egress signage obligations as imposed through building codes and standards.

Learning Objective 2:
The student will further understand the various technologies available to address those signage codes and standards.

Learning Objective 3:
And, the student will learn what the requirements are to conduct on-going testing of egress systems after installation.

...Read More
Load More

Your session will expire soon. Click below to stay logged in.

Stay Logged In Logout
×