The Art and Technology of Lighting

Lighting uniquely blends art and science through the use of electronic and mechanical controls. This program offers a broad selection of Lighting courses addressing design, controls, and how light can be manipulated through reflection, color temperature, dimming, lenses, IoT, and much more. Additionally, courses may be included that involve the use of natural light for a variety of purposes through daylight harvesting, fenestrations, filters, lenses, shades, films, and interlocking woven coils, textiles, plastics, and metals. Additionally, light components which may impact heat load, solar heat collection, or energy generation and storage, may also be located here. To search for related topics that are just a part of a larger discussion of Architecture, Design, and Building Science, please use the keyword search engine.

WELL Building Standard | Version 2

The WELL Light concept promotes exposure to light and aims to create lighting environments that are optimal for visual, mental and biological health. This session explores the elements that make up the WELL Lighting concept and provides insights and recommendations for designing to these standards.

Lighting Overview for Healthcare Facilities

 The class is a high-density orientation to lighting considerations and methods in the healthcare environment. Topics will include application situations, impacted populations, design methods, and a review and critique of examples of successful and less-than-successful healthcare lighting designs.

At the end of this course, participants will:

  1. Identify current trends in the healthcare lighting design and the impact lighting has on its occupants and the environment. 
  2. Identify who is impacted by our lighting design decisions and learn best practices on how to light the spaces they occupy.
  3. Identify specific lighting needs of patient rooms.
  4. Identify emerging lighting methods including design for circadian health.

Create Intelligent Buildings with Networked Lighting to Improve Tenant Overall Well-Being

This session will present how IoT lighting can be a fundamental platform for smart environments.  Well planned building integration allows a flexible, scalable lighting system to collect the data that ultimately brings more value to the building owner.

At the end of this course, participants will learn:

  1. Define IDA, light pollution, and related terms
  2. Identify the impacts of light pollution
  3. Demonstrate the difference between IDA and non-IDA lighting
  4. Assess the process of establishing IDA certification

The Implications of Light Pollution and the Impact of IDA

This course will discuss light pollution and its relation to the International Dark-Sky Association. After taking this course, individuals will know the impacts of light pollution as well as the difference between IDA and non-IDA lighting.

At the end of this course, participants will learn:

  1. To define IDA, light pollution, and related terms
  2. To identify the impacts of light pollution
  3. To demonstrate the difference between IDA and non-IDA lighting
  4. To assess the process of establishing IDA certification

924 & 1008 Lighting Controls

NFPA 70, the national electrical code details 2 different types of Emergency Lighting Control Devices—devices that guarantee that life safety lighting will be on at desired illumination levels in the event of an emergency. This course will help mitigate the confusion regarding the specification of these devices and understand their applications in the real world.

Prerequisite Knowledge: Knowledge of life safety systems, particularly a high-level understanding of the purpose of emergency lighting inverters and generators. In particular, ISO-1001/ISO-1002 would be a perfect lead into this course.

HSW Justification: This deals with life safety, the safe egress, and illumination of buildings in the event of an emergency.

Learning Objective 1:
Understand the background technology where ALCR and BCELTS devices need to be deployed.

Learning Objective 2:
Learn the difference between the technologies and reviews how they sit within one-line diagrams.

Learning Objective 3:
Understand some of the real world tradeoffs between the device types as it relates to wiring, proximity and ease of testing.

Learning Objective 4:
Understand the integration of lighting controls with the different types of ELCDs and review some tricks for how to reduce costs in systems.

 

Meet the Expert

Controlled and Connected Luminaires and Design Integration

Program: The Art and Technology of Lighting

This course will review the components and uses of connected luminaires, their specification and the standards and protocols involved in current lighting controls application. Further, this course will review the emergence of the Internet of things, and how it will impact future lighting controls application.Understand the definition, components and function of a connected luminaire.

Learning Objective 1:
Understand the definition, components and function of a connected luminaire.

Learning Objective 2:
Understand how connected lighting systems interact with the Internet of Things (IoT).

Learning Objective 3:
Understand the basic components of a lighting control system and uses with LED technology.

Learning Objective 4:
Understand the specification of connected luminaire systems.

AIA Course Number FP2018-D

 

Your session will expire soon. Click below to stay logged in.

Stay Logged In Logout
×